17-4PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究

2021-08-27 02:27:59 hualin

摘要

在硫酸盐还原菌 (SRB) 接种的模拟海洋溶液中,观察并研究了SRB和外加应力对17-4 PH不锈钢腐蚀行为的作用。分析应力-应变曲线和断口形貌,对比在无菌溶液和SRB接种溶液中的腐蚀行为差异。结果表明,与无菌溶液相比,SRB接种溶液中单级时效、双级时效和调质处理试样的ISCC值分别提高了5.2%,9.3%和4.4%。FeS的产生增强了阳极溶解过程并加速了腐蚀反应,双级时效试样组织中粗大的马氏体有利于氢的进入和聚集,增加了试样对SRB的敏感度。单级时效和调质处理试样的应力腐蚀开裂 (SCC) 机理都是阳极溶解 (AD),而双级时效试样是氢致开裂 (HIC)。

关键词: 17-4 PH不锈钢 ; 热处理 ; 应变量 ; SRB ; 应力腐蚀开裂

无氧环境和厌氧细菌在自然环境中普遍存在。因为环境中存在广泛的硫酸盐,硫酸盐还原菌 (SRB) 通常被认为是微生物诱导腐蚀 (MIC) 的主要元凶。在SRB存在下金属的腐蚀机理是一个复杂的生物化学过程,先前研究人员针对有SRB参与的金属腐蚀提出了各种机制。阴极去极化理论认为,SRB通过一种叫做“氢化酶”的酶来消耗阴极氢。而Costello[1]的研究表明,H2S是一种由SO42-还原得到的阴极活性化合物。因此,阴极去极化理论仍然存在很大争议[2]。李付绍等[3]分析了SRB对不锈钢的腐蚀规律,研究结果表明,SRB的代谢产物显著降低了不锈钢的点蚀电位。Chen等[4]观察到材料表面生物膜形成和缝隙中硫化物沉积导致电位差增大。Domzalicki等[5]在相似的阴极极化条件下分析了铁素体-珠光体和索氏体微观结构对SRB氢辅助裂解的影响。


关于微生物对SCC的影响仍存在争议。Gunasekaran等[6]报道,微生物可以在低碳钢表面形成保护膜,以抑制腐蚀。Xu等[7]表明,当培养基中缺少有机碳时,SRB利用Fe0氧化释放的细胞外电子作为电子供体,因此对碳钢的腐蚀性更强。Zhang等[8]观察到通过在培养基中加入电子介质可以增强电子传递并加速腐蚀,认为在细胞外电子转移理论下,电子传递控制SRB导致的MIC程度。Xu等[9]提出了生物催化阴极硫酸盐还原理论,阳极反应为Fe0的氧化,阴极反应为生物催化下的SO42-还原。SO42-还原发生在SRB细胞质中,没有物理阴极。鉴于此,本文主要研究SRB存在对不锈钢在模拟海水条件下应力腐蚀开裂 (SCC) 行为的影响规律。


1 实验方法


实验材料是抚顺特殊钢有限公司生产的05Cr17Ni4Cu4Nb (17-4PH) 马氏体沉淀硬化不锈钢,其主要化学成分如表1所示。


表1   17-4 PH不锈钢的化学成分

微信截图_20210726141429.jpg

本实验用17-4 PH不锈钢均先进行1040 ℃保温1 h的固溶处理。单级时效处理为 (550 ℃×4 h),记为工艺A,相应的试样称为试样A;双级时效处理为 (520 ℃×4 h+550 ℃×4 h),记为工艺B,相应的试样称为试样B;调质+时效处理为 (820 ℃×0.5 h+550 ℃×4 h),记为工艺C,相应的试样简为试样C。3种热处理工艺冷却方式均为空冷。升温速率约150 ℃/min,冷却速率约80 ℃/min。


模拟海水溶液是配制的pH为7.5的3.5% (质量分数) NaCl溶液。含SRB的模拟海水中使用的SRB菌是Desulfovibrio型,并且在美国石油协会推荐的标准培养基中培养。培养基I的成分为:0.5 g/L Na2SO4,1 g/L NH4Cl,0.5 g/L K2HPO4,0.1 g/L CaCl2,2 g/L MgSO4·7H2O,1 g/L,1g/L酵母粉和3.5 g/L乳酸钠;培养基II的成分为:0.1 g/L抗坏血酸,0.1 g/L保险粉和0.1 g/L硫酸亚铁铵。用压力蒸汽灭菌锅在121 ℃保温15 min以进行高压灭菌并空气冷却至25 ℃,冷却后加入经紫外线灭菌的培养基II,完成培养基配制。接菌时,将预先准备好的菌液放在恒温培养箱内 (30±2) ℃活化30 min[10]。


根据ASTM G49-85标准,自制应力框架施加恒定轴向拉应变来研究17-4 PH不锈钢在SRB接种溶液中的应力腐蚀行为。试样的尺寸如图1a所示,图1b为SRB接种溶液中的应力腐蚀实验装置示意图[11]。将SRB接种溶液转移至密封室,溶液和浸入的试样在室温下恒应变负载保持21 d。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F001.png

图1   用于应力腐蚀实验的试样尺寸及实验容器示意图


2 结果与讨论


2.1 不同热处理后的组织形貌分析


单级时效、双级时效和调质处理工艺后的不锈钢显微组织如图2所示。结果表明,材料内主要由回火马氏体和少量铁素体及残留奥氏体组成。图2a中固溶处理后直接时效处理的组织中同时存在淬火马氏体和回火马氏体,白色区域为淬火马氏体,黑色区域为回火马氏体[12]。Ziewiec等[13]认为,17-4 PH不锈钢是铁素体的冷却模式,在冷却过程中相变的顺序为:莱氏体→δ铁素体→γ奥氏体+δ铁素体→马氏体+δ铁素体。有研究[14]表明,组织中还有少量的残留奥氏体和第二相析出物,主要为Cr7C3和fcc-Cu相,弥散析出的细小fcc-Cu相和位错交互作用产生强化。图2b中双级时效处理后,白色组织区域减小,黑色组织区域增大,组织中部分淬火马氏体转变为条带状连接成片状的回火马氏体。在双级时效处理之后,回火马氏体均匀地分布在试样中。图2c中调质处理后,组织中马氏体均匀细小,层片状位向关系明确。晶界相互连接成网状,将主要由马氏体和残留奥氏体组成的晶粒包束在其中,这种组织形态与钢中产生较多的残留奥氏体有关。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F002.png

图2   经不同工艺处理的17-4PH不锈钢的显微组织


2.2 不同测试介质中的力学性能


2.2.1 应力-应变曲线分析


图3为不同热处理工艺的17-4 PH不锈钢在无菌和接种溶液中的应力-应变曲线。以单级时效、双级时效和调质处理试样在空气中的应力-应变曲线为参考来评价无菌和SRB接种溶液中的SCC敏感性。在无菌溶液中,双级时效过程后试样的屈服强度高于单级时效处理和调质处理后试样的屈服强度,分别约为1010,980和855 MPa。在SRB接种的溶液中,双级时效处理、单级时效和调质处理试样的屈服强度,分别约为950,970和850 MPa,分别比无菌溶液降低了5.9%,1%和0.58%。实验结果表明,双级时效处理后的17-4 PH不锈钢对SRB最敏感,经过调质处理工艺试样的SRB敏感性降低。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F003.png

图3   经不同工艺热处理的17-4 PH不锈钢试样在不同环境中的应力-应变曲线及断面收缩率


图3d为17-4 PH不锈钢在不同环境介质中的断面收缩率。可知,单级时效、双级时效和调质处理试样均在空气中拥有最大的断面收缩率。与空气中相比,施加的恒定应变可以降低试样的断面收缩率。与无菌溶液相比,SRB接种溶液中单级时效、双级时效和调质处理试样的断面收缩率分别减少了5.38%, 7.74%和3.72%。


有研究[15,16]结果表明:在SRB接种的溶液中存在H+,H+诱导材料的局部出现可塑性,导致材料的延伸率出现异常的现象。因此,提出可采用材料断裂前后截面的尺寸变化的断面收缩率来测量应力腐蚀敏感性 (ISCC)。ISCC可由下面两式计算获得[17]:

微信截图_20210726141339.jpg

式中,A0为试样的原始横截面积,mm2;A1为断裂后试样的横截面积,mm2。

微信截图_20210726141330.jpg

式中,ψs为在3.5%NaCl溶液中测得的断面收缩率,%;ψa为在空气中测得的断面收缩率,%。


由上面两式可知,当ISCC的值越接近1时,SCC的敏感性越高。表2显示了在无菌和SRB接种溶液中17-4PH不锈钢的ISCC值。可见,在有菌环境下,单级时效、双级时效和调质处理试样的ISCC分别提高了5.2%,9.3%和4.4%。


表2   不同热处理后的试样在无菌和SRB接种溶液中的ISCC值

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F004.png

根据经典腐蚀理论,细菌通过称为氢化酶的酶消耗阴极氢。在靠近腐蚀电位的电位下形成的氧化层或腐蚀产物的存在将催化析氢[18]。也有研究人员提出“替代理论”,涉及细菌本身,位于金属上或与金属相邻的微生物不直接侵蚀金属,它们通过新陈代谢的副产物诱导或促进腐蚀[19]。在SRB接种溶液中,电极反应如下:

微信截图_20210726140809.jpg



2.2.2 断口形貌分析


图4显示了17-4 PH不锈钢在无菌和接种溶液中的微观断口形貌。在图4a和d中,单级时效试样的韧性显著下降。在无菌溶液中,沿着不同高度的平行解理面形成解理裂缝。在含SRB的溶液中,在断裂面上出现了狭长的裂纹。在图4c中,调质处理试样在无菌溶液的断裂表面上出现大量不规则形状的凹坑和微孔,为典型延性断裂特征。在图4f中,含SRB溶液中的试样上观察到类似的断裂特征。在图4b和e中,双级时效试样中,脆性断裂在断裂表面上更明显,并且可观察到更深和更宽的裂缝。大尺寸裂缝对应于断面收缩率的降低,这证实双级时效的17-4 PH不锈钢对SRB最敏感。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F005.png

图4   经不同工艺热处理的17-4 PH不锈钢在不同环境中的断口形貌


通过研究钢中氢的渗透、氢的进入机制、氢的扩散率以及氢的捕捉和去除可知,对于相同的微观结构,随着夹杂物含量的增加,钢的抗HIC性能降低,局部不规则性对HIC敏感性也有显著影响[20]。研究表明[21],氢原子可以降低Fe-Fe键的内聚力或增加钢的局部脆性从而引发微裂纹。双级时效试样中包含的夹杂物或粗大的板条状马氏体为氢的聚集提供了条件,极易造成裂纹萌生[22]。一旦微裂纹开始扩展,积聚的氢原子也会通过增加裂纹尖端钢的局部溶解速率来促进裂纹扩展或通过降低新形成平面的表面能来降低断裂功[23]。


SRB接种溶液中17-4 PH不锈钢的侧表面断裂形态的显微照片见图5。对于全部试样,捕获区域距断裂线约300 μm。不同热处理条件下的侧面显微照片显示出不同的形态特征。在图5a中,单级时效处理试样的侧表面上出现了一些细小的微裂纹。对于调质处理的试样可观察到类似的形态 (图5c)。在双级时效试样上观察到了更深的裂纹 (图5b),这证实了双级时效17-4 PH不锈钢的脆性断裂特征。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F006.png

图5   经不同工艺热处理的17-4 PH不锈钢试样在SRB接种溶液中的侧面断裂形貌


3 结论


(1) 热处理工艺可以提高17-4 PH不锈钢的抗腐蚀性能,试样的耐电化学腐蚀能力表现为:调质处理试样>单级时效处理试样>双级时效处理试样。


(2) 在施加应力的单独作用下,双级时效试样中的回火马氏体尺寸粗大,促进裂纹萌生,降低了试样的屈服轻度,增加了应力腐蚀敏感性。


(3) 在SRB接种溶液中,FeS和H2S的产生增强了阳极溶解和氢渗透,加速了腐蚀反应。与无菌溶液相比,阻抗值降低,ISCC增加。双级时效试样的ISCC变化量最大,对SRB最敏感。

参考文献

[1] Song J, Curtin W A. A nanoscale mechanism of hydrogen embrittlement in metals [J]. Acta Mater., 2011, 59(4): 1557

doi: 10.1016/j.actamat.2010.11.019

[2] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067

doi: 10.1007/s11274-012-1116-0 pmid: 22806745

[3] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536

[3] (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌对18-8不锈钢点蚀行为的影响 [J]. 金属学报, 2009, 45: 536)

[4] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1

[5] Dom?alicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2015, 58: 413

[6] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953

[7] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74

doi: 10.1016/j.ibiod.2014.03.014

[8] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14

pmid: 25023048

[9] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52

pmid: 27071053

[10] Zhao Z H, Wang X, Wu M. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel [J]. Heat Treat. Met., 2018, 43(12): 109

[10] (赵志浩, 王旭, 吴明. 热处理对05Cr17Ni4Cu4Nb钢耐蚀性的影响 [J]. 金属热处理, 2018, 43(12): 109)

[11] Wu M, Zhao Z H, Wang X, et al. Synergistic effects of a sulfate-reducing bacteria and an applied stress on the corrosion behavior of 17-4 PH stainless steel after different heat treatments[J]. Int. J. Electrochem. Sci., 2020, 15: 208

[12] Liu R L, Yan M F, Qiao Y J, et al. Heat treatment and tensile properties of martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(2): 87

[12] (刘瑞良, 闫牧夫, 乔英杰等. 马氏体不锈钢热处理及其拉伸性能 [J]. 金属热处理, 2013, 38(2): 87)

[13] Ziewiec A, Zielińska-Lipiec A, Tasak E. Microstructure of welded joints of x5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment [J]. Arch. Metall. Mater., 2014, 59(3): 965

[14] Deng D W, Chen R, Tian X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(4): 32

[14] (邓德伟, 陈蕊, 田鑫等. 热处理对17-4PH马氏体不锈钢显微组织及性能的影响 [J]. 金属热处理, 2013, 38(4): 32)

[15] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68: 693

[16] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22

[17] Torres-Islas A, González-Rodríguez J G. Effect of electrochemical potential and solution concentration on the SCC behaviour of X-70 pipeline steel in NaHCO3 [J]. Int. J. Electrochem. Sci., 2009, 4: 640

[18] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corros. Sci., 2008, 50: 3116

[19] Wang D, Xie F, Wu M, et al. Stress corrosion cracking behavior of X80 pipeline steel in acid soil environment with SRB [J]. Metall. Mater. Trans., 2017, 48A: 2999

[20] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169

[21] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84

doi: 10.1016/j.ibiod.2014.05.007

[22] Casanova T, Crousier J. The influence of an oxide layer on hydrogen permeation through steel [J]. Corros. Sci., 1996, 38: 1535

doi: 10.1016/0010-938X(96)00045-5

[23] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。